

Università degli Studi di Napoli Federico II

DIPARTIMENTO DI

INGEGNERIA INDUSTRIALE

Dipartimento di Ingegneria Industriale – Sezione Aerospaziale

Hybrid Rockets Propulsion – Introduction

Hybrid propellant rockets are chemical engines in which fuel and oxidizer are in different physical state

Advantages

- Throttling and restart capability
- Safety and reliability
- Economic sustainability
- Environmental sustainability
- Wide range of potential application:
 - Sub-orbital flight vehicles;
 - Launch vehicle lower and upper stages
 - Nano- and microsatellite launch vehicles

Disadvantages

- Low regression rate of the solid fuel (which means low thrust level)
- Complexity of the thermo-fluid dynamic behaviour in hybrid rockets (combustion instabilities, mixture ratio shifting, effect of operating parameters)

Hybrid Rockets Propulsion – Historical perspective

- 1933: First hybrid rocket designed by Mikhail Tikhonravov and Sergei Korolev and their group and launched reaching 1500 m of altitude
- 1940s: First effort in hybrid rocket development in U.S., at the Pacific Rocket Society and General Electric
- 1960s: Flight test programs initiated both in the U.S. and in Europe; development of Marxmann's theory about hybrid rocket combustion process; attempts of scaling up

Tikhonravov and his Gird-09

- → Several successful firing tests performed, but the results highlighted an excessively low regression rate and volumetric fuel loading efficiency
- 1970s: interest in hybrid propulsion revived because of safety concerns about solid propellant segments of Space Shuttle booster

Hybrid Rockets Propulsion – Historical perspective

 1980s-1990s: several development programs: AMROC (American Rocket Society) LOX/HTPB propelled launch vehicle and Hybrid Propulsion Demonstration Program (HPDP) for a 1100 kN thrust test bed

HPDP engine firing at 1100 kN thrust

 2000s: Successful flight of the reusable manned spaceplane SpaceShipOne; development of highregression rate paraffin-based fuels at Standford University, which extend the potentiality for the application of hybrid rockets

AMROC's SET-1 launch vehicle

Virgin Galactic SpaceShipOne

Main challenges in Hybrid Rockets development

- Low regression rate of classical polymeric fuels
- Several proposed strategies leading to an increase of the system complexity without producing major improvements of the engine overall performance
- ⇒ Interest in the utilization of liquefying fuels, e.g. paraffin-based fuels
- Enhancement of regression rate due to the formation of a low-viscosity unstable melt layer on the burning surface and the consequent mechanical entrainment of liquid droplets
- Complexity of the thermo-fluid dynamic behaviour in hybrid rockets
- Behaviour can significantly change depending on the specific fuel formulation, the manufacturing process and the motor operating conditions
- ⇒ Need for numerical modelling to support the design and improve the performance prediction capabilities

Rocket nozzle materials in the harsh combusting environment

- The nozzle is subjected to the highest heat fluxes and shear stresses in a chemically aggressive environment
 - → Proper selection of suitable rocket nozzle materials
- > Classical materials are subjected to thermochemical erosion
 - → Enlargement of the nozzle throat section and consequent decrease of rocket performances
- > Ultra-High Temperature Ceramics (UHTC)
 - \rightarrow Good erosion resistance
 - → Poor thermal shock resistance

- Recent interest in Ultra-High Temperature Ceramic Matrix Composites (UHTCMC) based on C or SiC fibres in UHTC matrix
- Experimental testing and CFD simulations are needed to improve the design and the current performance prediction capabilities

R.Savino, G.Festa, A. Cecere and L. P. a. D.Sciti., "Experimental set up for characterization of carbide-based materials in propulsion environment.," Journal of the European Ceramic Society, pp. 1715-1723, 2015.

Aerospace Propulsion Laboratory

The experimental activities are carried out at the Aerospace Propulsion Laboratory located in the military airport "F. Baracca" in Grazzanise (CE)

Main purpose: testing of hybrid rockets

- Evaluation of propellant performance and combustion stability
- Testing of sub-components (nozzles, air intakes, catalytic devices, burners, ignition and cooling systems)
- Testing of materials for application in combustion environments

Main control and measurement techniques

- Oxidizer mass flow rate: regulated by a TESCOM electronically controlled pressure valve; measured by a Venturi-meter
- Chamber pressure: capacitive pressure transducers
- Thrust: load cells on the test bench
- The analog signals generated by the sensors are processed and recorded by a NI PXI Express standard system

Experimental facility

Hybrid Rocket Engines

1 kN-class hybrid rocket

- Axisymmetric combustion chamber
- Conical axial injector
- Upstream and downstream of the solid grain a dump plenum and an aft-mixing chamber are set up, respectively
 - A graphite converging-diverging is employed in the 200 N-class engine
- Water-cooled, convergingdiverging nozzle with 16 mm throat diameter and 2.44 area ratio was employed in the 1 kNclass engine

Engine class	Prechamber diameter	Prechamber length	Fuel grain length	Post-chamber diameter	Post-chamber length
200 N	46 mm	25 mm	220;240 mm	40 mm	58;38 mm
1 kN	80 mm	70 mm	430 mm	80 mm	200 mm

Motor dimensions for the definition of the computational domain

Experimental facility

APPOINT HOLE

Hybrid Rocket Engines

200 N-class hybrid rocket

1 kN-class hybrid rocket

Firing tests

pag. 1

Firing tests

11

Firing tests

Firing tests with polymeric fuels

Firing test operating conditions						
Darameter	Test	Test	Test			
	HDPE-1	ABS-1	HDPE-2			
Engine class	200 N	200 N	1 kN			
Fuel	HDPE	ABS	HDPE			
Time-averaged oxygen mass flow rate, g/s	27	27.5	208			
Grain initial port diameter, mm	15	15	25			
Grain length, mm	220	240	570			
Test time, s	11.4	12	42.6			
Average oxidizer mass flux, kg/m ² s	91.34	69.78	84.75			
Time-space averaged regression rate, mm/s	0.39	0.61	0.73			
Time-averaged aft-chamber pressure, atm	6.41	4.78	25.0			
Time-averaged overall mixture ratio	5.63	2.62	3.02			
Postburn space-averaged port diameter, mm	23.8	29.7	86.8			
Time-space-averaged port diameter, mm	19.4	22.4	55.9			
Nozzle throat diameter, mm	9.6	12	16			

Rocket exhaust plume during Test HDPE-1

Hybrid rocket exhaust nozzle after the engine burn-out for Test HDPE-1

HYPROB-new research project

The objectives of the HYPROB-new research project by CIRA is the design and test of a 1 kN-class paraffin-fuelled hybrid rocket demonstrator

University of Naples is responsible of small-scale tests for the paraffin characterization, support in the design and testing of the 1 kN Demo

Test ID	Effective oxygen mass	Effective burning time,	Average oxidizer mass	Average regression	Average chamber	Average	Rocket exhaust plume at different
	flow rate, g/s	S	flux, kg/m²s	rate, mm/s	pressure, bar		oxygen mass flow rate
0a	19.1	4.2	51.88	1.58	4.5	39	
0b	26	5.6	54.50	1.74	7.0	63	lest I, $m_{ox} = 16 g/s$
1	16	3.5	48.38	1.63	4.9	39	
2	25	4.7	50.52	2.15	8.0	73	M. Contraction
3	29	4.8	66.26	1.80	8.5	82	
4	39	4.9	77.11	2.08	11.5	118	
5	29	5.4	59.22	1.79	8.0	80	
6	38	5.6	67.83	2.04	11.2	114	
7	38	5.1	56.28	1.83	11.1	112	Tost 12 \dot{m} = 50 5 a/s
8	44	4	68.88	2.11	13.2	136	$1est 12, m_{ox} = 39.3 g/s$
9	50.2	4	75.90	2.28	15.7	162	
10	55.5	3.8	83.75	2.41	16.9	178	
11	60	3.9	85.23	2.6	18.8	200	
12	59.5	4.5	96.76	2.73	18.4	201	
1W	42	5.3	72.58	2.29	12.9	135	
2W	60.5	4.1	105.22	2.96	19.1	209	
*	29	3.5	72.93	0.94	8.0	74	

HYPROB-new research project

Regression Rate Laws

Fuel regression rate as function of the oxidizer mass flux

Modelling of hybrid rocket internal ballistics

Physical and numerical models for gaseous flowfield simulation

- **Reynolds-Averaged Navier-Stokes equations** for single-phase multicomponent turbulent reacting flows are solved with a control-volume-based technique and a pressure-based algorithm
- Turbulence model: Shear Stress Transport (SST) k-omega
- Combustion model: Non-premixed combustion based on the Probability Density Function (PDF) approach coupled to chemical equilibrium
- These models have been found the most suitable considering a large number of comparison with existing experimental data

- The boundary is divided in the following patches:
 - Oxidizer injector exit section → BC type: mass flow inlet
 - Pre-chamber, aft-mixing chamber and nozzle walls → BC type: wall
 - Fuel grain surface → Dedicated treatment for fuel regression rate modelling estimated by means of an iterative procedure
 - Nozzle outlet section → BC type: pressure outlet

The case of polymeric fuels: steady simulations

Numerical simulations at the conditions of the two test cases with polymeric fuels and the 200 N-class rocket shown before

Temperature contour plot with overlapped streamlines (top half) and mixture fraction iso-lines (bottom half)

- Spreading of the oxygen jet up to an impingement point on the grain surface
- Extended recirculation region upstream of the impingement point
- Recirculation regions in the pre-chamber and in the aft-mixing chamber
- Temperature distribution reflecting the diffusion flame structure
- Propellant mixing promoted by the high turbulent kinetic energy generated in the vortices

The case of polymeric fuels: steady simulations: Comparison of numerical results with experimental data

Regression rate distributions and comparison with experimental data

- Experimental points are obtained measuring the final port diameter in different cross sections
- Peak in the regression rate profiles due to the oxygen jet impingement
- Monotonically increasing trend of the regression rate profiles after a minimum point due to the effect of the mass addition, which is dominating on the effect of the boundary layer growth
- Good agreement between the computed and the experimental results both in terms of regression rate profiles and average pressures in the aft-mixing chamber

Test case	Computed averaged fuel	Regression rate relative	Aft-mixing chamber	Chamber pressure
	regression rate (mm/s)	error	pressure (atm)	relative error
Test 1 (HDPE)	0.384	1.54%	6.52	1.7%
Test 2 (ABS)	0.581	4.75%	4.91	2.7%

Computed average parameters and deviation with experimental data

The case of liquefying fuels: comparison between the results with and without considering the entrainment

Input conditions corresponding to Test P-4
Vaporization temperature equal to 675 K; Entrainment parameter equal to 2.1 • 10⁻¹³ m^{8.5}s^{0.5}/kg³

• Thermo-fluid dynamic flow field is similar to that shown before

• Temperature distribution reflecting the typical structure of a diffusion flame

• In the case with paraffin fuel, because of the significant fuel mass addition, due in great part to the entrainment and assigned in the whole port volume, the hotter region rapidly converge into the core flow

The case of liquefying fuels: comparison of converged numerical results with experimental data

• Simulations with the oxygen mass flow rate and the average grain port diameter corresponding to the test cases shown before

Computed regression rate deviations from experimental data

Calculated space- averaged regression rate, mm/s	Error relative to experimental data
1.81	11.0%
1.96	9.5%
2.13	4.4%
2.27	0.9%
2.57	6.6%
2.81	2.9%
3.00	1.4%
	Calculated space- averaged regression rate, mm/s 1.81 1.96 2.13 2.27 2.57 2.81 3.00

- Maximum deviation of 11% reached at the minimum mass flux
- Numerical prediction improves with higher mass fluxes showing excellent agreement at the largest mass fluxes where the deviation is around 1%

UHTCMC in hybrid rocket environment

Motivation for research project on new-class materials in hybrid rocket environments

UHTCMC in hybrid rocket environment

C³HARME European Project

- NEXT GENERATION CERAMIC COMPOSITES FOR COMBUSTION HARSH ENVIRONMENTS AND SPACE
- Partners of the project: CNR, IN Srl, University of Birmingham, TECNALIA, UNINA, DLR, AVIO, NANOKER, HPS, Airbus, GMBH, Trinity College
- Application: Near ZERO-Erosion nozzle that can maintain dimensional stability during firing in combustion chambers of high performances rockets for civil aerospace propulsion

Activities of University of Naples "Federico II"

- **Design of prototypes and test conditions** for testing of new materials in hybrid rocket propulsion environment
- First experimental tests on new UHTCMC materials for application in hybrid rockets
 - Free jet tests on small material samples
 - Test of UHTCMC nozzle throat inserts
- Definition of suitable numerical models for supporting the experimental activities

Characterization of UHTCMC in hybrid rocket propulsion environment (identification of the better candidates for nozzle)

Experimental setups

Characterization of UHTCMC nozzle throat inserts

Experimental setups

•

•

Free jet tests on UHTCMC samples

Free jet tests on UHTCMC samples

Experimental results

Erosion rates of UHTCMC samples in free jet test

Pictures of test on TSC-SF-1 sample, at beginning (left) and end (right) of the test

Test of UHTCMC nozzle throat inserts

UHTCMC samples and test conditions

UHTCMC nozzle throat inserts

UHTCMC
sample IDMatrix compositionCarbon fibersZBSC-SF-TIZrB2/SiCChoppedZBSC-LF-TIZrB2/SiCContinuous Unidirectional

Nominal test conditions for throat insert tests

	Test condition 1TI	Test condition 2TI
Oxidizer mass flow rate [g/s]	25	40
Oxidizer-to-Fuel ratio	5.13	6.50
Chamber pressure [bar]	6.49	5.65
Combustion temperature [K]	~ 3200	~ 3200
Nozzle exit pressure [bar]	0.42	0.46
Nozzle inlet CO ₂ mass fraction	0.32	0.32
Nozzle inlet H ₂ O mass fraction	0.16	0.14
Nozzle inlet O ₂ mass fraction	0.30	0.41
Shear stress [hPa]	3.2	4.8
Average cold-wall surface heat flux [MW/m ²]	17.0	20.0

Example of temperature distribution through the nozzle

Test of UHTCMC nozzle throat inserts

Experimental results

- Graphite nozzle: significant erosion during test in both conditions 1 and 2TI
- UHTCMC nozzle throat inserts: no significant erosion during test in conditions 1 better erosion resistance than graphite nozzle also during test in conditions 2TI

Direct effect on rocket performance

- Strong decreasing trend of the chamber pressure in the case of graphite nozzle
- More stable behavior in the case of UHTCMC nozzle throat inserts

Theoretical and measured chamber pressures vs operating time for tests in conditions 2TI

THANK YOU FOR YOUR ATTENTION!